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Abstract—Vehicle-to-everything (V2X) communication plays a
crucial role in enabling collaborative intelligence among au-
tonomous vehicles, by utilizing paradigms such as Federated
Learning (FL). However, the dynamic and decentralized nature of
vehicular networks poses challenges, particularly in maintaining
model convergence and robustness without centralized coordina-
tion. In this paper, we propose a dynamic Practical Byzantine
Fault Tolerant consensus mechanism tailored for decentralized
FL in vehicular environments. Our method optimizes federated
averaging by addressing the high mobility and intermittent
connectivity of vehicles. Through simulations, we evaluate its
performance against baseline method, demonstrating improved
resilience, efficiency, and adaptability in the presence of adver-
sarial conditions.

Index Terms—Vehicle-to-Vehicle, VANET, V2X, Byzantine
fault tolerance, decentralized federated learning

I. INTRODUCTION

Recent advancements in vehicle-to-everything (V2X) com-
munication have notably improved existing transport systems
by enabling increased connectivity and driving autonomy
levels. V2X allows on-board sensor data interactions with
neighboring vehicles, roadside units (RSUs), and cloud appli-
cations over wireless local network or cellular connectivity [1],
[2]. A typical V2X application scenario is enhancing driving
safety via information exchange among multiple entities to
avoid occlusion to the view of single vehicles [3].

However, when the communication pattern becomes com-
plex, e.g., certain tasks require continuous exchange of infor-
mation among various entities over a relatively long period
of time, two features of vehicles raise challenges: (a) they
are highly dynamic, meaning the information exchange may
happen within a short time frame; (b) they are not centrally
controllable, meaning that, it is hard to organize a formation
of vehicles for a long time. Federated learning (FL) is such
a prominent example of collaboratively utilizing complex and
continuous V2X communication [4]. This paradigm utilizes
the computing power and local data of a group of vehicles
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Fig. 1. A decentralized federated learning scenario based on V2V connection
among vehicles. In one step of FL, the ego vehicle receives model from
neighboring vehicles and get average/consensus to update its own model.

to keep training and improving machine learning models. But
without central server’s coordination, due to concerns about
vehicle data privacy, the highly dynamic vehicle-to-vehicle
(V2V) network poses both opportunities and challenge to
vehicular FL [5]. This scenario can be illustrated in Fig. 1.

In this study, we explore the application of Byzantine Fault
Tolerance (BFT) algorithms in decentralized federated learning
(DFL) within dynamic vehicular ad-hoc network (VANET).
Federated Averaging serves as a fundamental step in FL. In
centralized FL, this process involves directly averaging local
models from all participating nodes in a central server. But
in DFL, model aggregation is achieved through consensus
mechanisms, with BFT algorithms commonly employed to
ensure consensus [6]. The high mobility and dynamic topology
of V2V networks present both significant challenges also to
conventional BFT algorithms.

Towards this end, in this work we make the following
contributions. First, we propose a novel algorithm, dynamic-
PBFT (Practical BFT), that optimizes the federated averaging
process in decentralized learning scenarios in dynamic ve-
hicular networks; its performance is then evaluated in sim-
ulation experiments. Compared to classic PBFT algorithm,
the proposed method manages the join/leave of vehicular
nodes, and provide mechanisms including malicious node
detection and computing interruption recovery. Second, we
analyze the impact of malicious nodes, dynamic node scale,



and communication reliability on the algorithm’s performance,
providing insights into its robustness and scalability.

II. RELATED WORK

A. Vehicle-to-Everything

The evolution of V2X has seen significant advancements,
particularly with the introduction of Cellular V2X (C-V2X)
and the ongoing development of 5G-V2X. C-V2X, defined
in 3GPP Release 14 and 15, leverages LTE networks to
provide reliable low-latency communication, which is critical
for safety applications [7].

Recent research has highlighted the enhanced capabilities of
5G-V2X, standardized in 3GPP Release 16, which promises
higher data rates and reduced latency, thus broadening the
scope of V2X applications to include more complex and
data-intensive services [8]. The global deployment of these
technologies has varied, with China and Europe leading in
terms of large-scale trials and commercial implementations,
while the United States has made regulatory strides to facilitate
further deployments [9].

Among applications utilizing V2X, Collaborative Perception
is a very important type. It is essential to address occlusion
and sensor failure issues in autonomous driving. Two main
challenges are which information should be exchanged over
the V2X network and how the exchanged information is
fused. [10] devises an effective collaboration method based
on exchanging the outputs from each agent, achieving a better
bandwidth-performance tradeoff. However, a large part of
existing work focuses on utilizing V2X via instance or short-
period collaboration, mostly at the intersection of a road,
as shown in [11]. Long-term collaborations such as model
training or collaborative optimization are not well discussed.

B. Decentralized Federated Learning

In recent years, FL has gained relevance in training collab-
orative models without sharing sensitive data. It has shown
promise in being applied together with V2X in the field
of collaborative driving [12]. Specifically, DFL emerged to
address the concerns of latency and single-point failure by
promoting decentralized model aggregation and minimizing
reliance on centralized architectures [13].

In [14], a reputation-aware coordination mechanism is de-
signed to coordinate a group of smart devices dynamically into
a virtual cluster, in which the machine learning model aggre-
gation is conducted in a decentralized P2P manner. In [15],
the authors propose an FL framework that features a directed
acyclic graph-based structure, where nodes represent uploaded
models, and referencing relationships between models form
the DAG that guides the aggregation process; this framework
aims to provide both fairness and security in training.

DFL also faces challenges from the perspective of algo-
rithms, such as system heterogeneity and statistical hetero-
geneity. To ensure fast convergence in the presence of slow
edge devices, [16] presents an efficient DFL method that
integrates adaptive control of both local updating frequency

and network topology to better support heterogeneous partic-
ipants. However, most current work on DFL still focuses on
stable environments where the decentralized nodes can form
a stable topology [13]. This assumption is not applicable in
collaborative driving, where the vehicles cannot fall under the
control of a single entity and form groups only temporarily.

C. Practical Byzantine Fault Tolerance

Consensus algorithms play a key role in decentralized
distributed systems, and BFT algorithms are widely used to
achieve consensus [17]. Traditional BFT algorithms however
have several problems. For example, BFT assume synchronous
networks, where message delivery is guaranteed within a
known time. It also require an exponential number of message
exchanges which makes it non-scalable. The PBFT is then
proposed to address these issues [18]. PBFT can be used in
areas such as Internet of Things due to its fault tolerance and
efficiency in achieving consensus in distributed networks [19].
However, even with improvements, PBFT still faces challenges
and limits in decentralized FL performed via V2V networks. It
is still sensitive to the dynamic joining and departure of nodes
and are ill equipped to handle environments characterized by
large scale and pronounced dynamics [19]. The work [20],
[21] aim to apply PBFT in decentralized FL, but they focus
on addressing data privacy issues.

III. ALGORITHM DESIGN

The main goal of this algorithm is to optimize a key step
in FL process in dynamic vehicular networks: the federated
averaging in decentralized learning scenarios. The proposed
algorithm, dynamic-PBFT, is based on traditional PBFT and
aims to generate good performance in highly dynamic net-
works where the vehicle nodes join and exit the decentralized
learning process with high probability.

A. System Model

We adopt the network model of a dynamic vehicular net-
work, where nodes are distributed according to a random
movement model and interact via V2V communication. Each
node moves in a two-dimensional coordinate plane, with its
movement described by the following formulas:

Xt+1 = Xt + ∆x, ∆x ∼ N (0, σ2) (1)
Yt+1 = Yt + ∆y, ∆y ∼ N (0, σ2) (2)

where Xt and Yt represent the coordinates of a node at time
t, and ∆x and ∆y represent random change in position in the
x- and y-axes, respectively.

This system faces two main types of threats. First is the
Byzantine nodes. These malicious vehicle nodes may alter or
forge their local models and send fraudulent information to
the network. According to the PBFT algorithm, the system
can tolerate up to f ≤ N−1

3 Byzantine nodes, , but the
presence of such nodes can severely affect the quality of model
training. The second threats comes from non-malicious faulty
nodes. These nodes can temporarily go offline due to increase
distance, network disruptions, or insufficient computational
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Fig. 2. Vehicle node join process in proposed dynamic PBFT algorithm.

resources. While they do not intentionally disrupt training,
their disconnection can cause interruptions in model updates.

B. Dynamic PBFT Algorithm

Based on this system model, the proposed dynamic PBFT
algorithm consists of the following components.

Dynamic Vehicle Node Management To ensure network
stability, the joining and exiting of nodes must pass through
a strict admission control process. New nodes are evaluated
based on the overall reliability of network and current state of
existing nodes. The admission process prevents performance
degradation by selectively allowing nodes that meet predefined
stability criteria. Specifically, the joining condition is based on
the network’s reliability indicator P and a dynamic threshold
δC , and assign the node requesting to join to the next available
round of consensus. It ensures new nodes are only added when
the network’s reliability is sufficient to support them. Fig. 2
shows the node joining process.

The condition for node joining can be calculated as follows.

PN+1 ≤ δC , T ≤ (N + 1)/2 (3)

Here PN+1 represents the overall reliability of the network
after adding a new vehicle node, and T is the minimum
required number of valid responses. The dynamic threshold
is calculated as in Eq. 4.

δC = 1− 2 log(1− P )

N
(4)

By modeling factors such as path loss and signal-to-noise
ratio (SNR), we can compute the communication success rate
between each pair of nodes in real-time. The communication
success rate is calculated using the following formula:

PC(i, j) =
1

1 + e−0.5(SNR−L)
. (5)

Here L is the path loss, and is defined as L = L0+10γ log10 d,
where, L0 = 37 dB is the reference loss, γ = 2.7 is the
path loss exponent, and d is the distance between nodes. The
overall network reliability indicator, P , is computed using
Monte Carlo simulations as follows:

P =

N∑
k=Tmin

(
N

k

)
P k

success(1− Psuccess)
N−k (6)

where Tmin = (N+1)
2 , Psuccess = PC(1 − Pe) and Pe is the

node failure rate.
Training Interruption Recovery Temporary disconnec-

tions in volatile vehicular environments can derail decentral-
ized training progress. In the case of node disconnection, its
training progress and model is saved in local snapshot, and
when the node reconnects, it resumes training from where it
left off. If the diconnection time is too long, which means
the vehicle perhaps has already move in different direction
than tha training group vehicles, the training data is then
discarded. If the estimated training time is h and the progress
in percentage is p, the timeout threashold is set to (1− p)h.

Malicious Node Detection To prevent malicious nodes
from affecting the global model, the algorithm introduces a
model validity verification mechanism in the PBFT consensus
process. If a node’s local model exhibits anomalies (e.g.,
values exceeding reasonable ranges), the node will be marked
as malicious, and its model will be excluded from subsequent
consensus rounds.

IV. EVALUATION

A. Setup

To simulate a dynamic vehicular network environment,
the evaluation is implemented based on the discrete event
simulation framework SimPy on Python 3.9. A simulation
time step is set to 1 unit, representing real-time operations
in seconds. The dynamic behavior of the vehicle nodes is
modeled following the following mechanisms:

• Movement Model The coordinates (x, y) of each node
are updated in real-time, with a movement step limited to
±1.0 meter to prevent excessive clustering. Total driving
area is restricted to [-50, 50] meters in the simulation.

• Communication Model The maximum communication
range of each node is 100 meters. The dynamic com-
munication success rate is calculated using a logarithmic
path loss mode.

The maximum number of vehicle nodes is 15. The initial
proportion of malicious nodes is set to 0.1 (later extended to
0.3 for comparison). The probability of new node joining per
time unit, which triggers dynamic management mechanism,
is set to 50%. The probability of node disconnection, which
validates the effectiveness of the recovery mechanism, is set
to 30%. The consensus computation we use as example here
is averaging of vectors from vehicle nodes, following the core
step in Federated Learning. Network reliability threshold is
calculated based on Eq. 4. For simplicity, we set the vector size
to be 100 in this simulation, though in real world application
this vector size can be millions.

The federated averaging process is simulated through pe-
riodic local training and secure global aggregation, synchro-
nized with PBFT consensus protocols. Benign nodes generate
parameters are random numbers between 0 and 1, while
malicious nodes produce distorted values to simulate data
poisoning. Training duration varies uniformly between 1 to 3
time units per round, emulating heterogeneous computational
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Fig. 3. Impact of vehicle-to-vehicle distance on communication success rate.

capabilities across vehicles. For global model aggregation,
after local training, nodes initiate a PBFT consensus round
to validate and aggregate updates. A model is deemed valid if
its parameters fall within [0,1), filtering out malicious outliers.

Keeping these parameters fixed, in the simulation we adjust
key variables, e.g., the proportion of malicious nodes and par-
ticipating vehicle nodes, to verify the algorithm’s robustness.
Each experiment is run for 3 iterations, and the average values
are recorded to eliminate the impact of randomness.

B. Communication Reliability

The communication success rate between nodes is modeled
using a logarithmic path loss model. The communication
success rate decreases exponentially as the distance between
nodes increases. The experiment results in Fig. 3 show the
following patterns. At short distances, the communication
success rate remains above 90%, primarily influenced by the
SNR of 70 dB and a path loss exponent γ = 1.8. This
stability drops then according to distance, leading to packet
loss or delays in message delivery. To accurately reflect the
network’s communication state, the simulation updates the
communication success rate matrix periodically, at each time
unit. This real-time update reflects changes in node positions
and communication conditions.

The experiment also compares the standard deviation of
communication success rates under static and dynamic topolo-
gies. In static topology, the standard deviation is 0.12. As
nodes remain stationary, some communication links gradually
fail, resulting in higher variability. In dynamic topology, the
standard deviation drops to 0.07 because node movement
optimizes the link distribution. As a result, the average com-
munication success rate improves by 15%.

C. Impact of Malicious Nodes

Fig. 4 presents a dual-axis chart comparing delay and
throughput as the malicious node proportion changes. The left
vertical axis represents delay (in time units), and the right
vertical axis shows throughput (updates per unit time).

The curves for different network scales highlight the
marginal benefits of increasing network size. As the proportion
of malicious nodes increases, the consensus delay gradually
increases. This is primarily due to repeated broadcasts and
validation requests caused by node disconnections, which
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Fig. 4. Impact of malicious vehicle node ratio on latency and throughput.

result in higher delays. With the increase in the proportion
of malicious nodes, the number of invalid consensus rounds
rises, leading to a decrease in throughput. For instance, in a 15-
node network, when the malicious node ratio reaches 30%, the
throughput drops from 3.8 updates per unit time to 2.1 updates
per unit time. In terms of the reliability threshold effect, when
the network reliability drops below a dynamically calculated
threshold, the system refuses new nodes from joining the
network. Concerning malicious node concealment, malicious
nodes attempt to interfere with consensus by generating
anomalous model parameters, but PBFT’s three-phase voting
mechanism effectively filters out these anomalies. When the
number of malicious nodes is less than or equal to f, the
verification phase can eliminate over 90% of invalid models.

D. Comparison with Baseline

The goal of this experiment is to compare the performance
differences between the Dynamic PBFT protocol and the
classic PBFT protocol in key metrics. The initial number of
nodes is fixed at 10, with a maximum of 15 nodes, and a
20% malicious node ratio. Each round of simulation runs for
a maximum of 10 time units.

First, we check the impact of nodes’ join/leave on consensus
success in a dynamic network environment. Specifically, in
reach round of simulation we first calculate the dynamic
load factor, which is load factor * (N / max nodes
number). The failure probability of each node then is the
sum of base failure rate and the dynamic load factor. The
communication success rate is then calculated as described
in Sec. III-B. The maximum allowed failure rate threshold
is set to 1. Evaluation results show that the average success
rate is close to 100%. This indicates that the dynamic PBFT
demonstrates the same performance as traditional PBFT, even
in the presence of new nodes joining and nodes disconnecting.

We then compare the number of messages generated during
each consensus round. The median communication overhead
of Dynamic PBFT is approximately 180 messages per round,
while Baseline PBFT is 300 messages per round, with the
latter having a broader distribution range. Dynamic PBFT
reduces redundant message passing by optimizing the message
broadcasting strategy, such as selective broadcasting and dy-
namically updating communication links. In contrast, Baseline
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PBFT uses a traditional full-node broadcasting mechanism,
leading to communication overhead growing quadratically
with the number of nodes (O(N²)). As shown in the left part of
Fig. 5, the Dynamic PBFT reduces communication overhead
by 43.8% compared to Baseline PBFT.

Next we investigate the time required to complete a round
of consensus using different PBFT scheme. The experimental
results in the right part of Fig. 5 show that the median
consensus time for Baseline PBFT is 0.6 time units, slightly
lower than the 0.9 time units for Dynamic PBFT. This dif-
ference is mainly due to management overhead. Dynamic
PBFT enhances network reliability by dynamically monitoring
node status and adjusting communication links. But it also
introduces additional negotiation steps, such as node recovery
and link updates, resulting in increased consensus time per
round. On the other hand, Baseline PBFT uses a static network
configuration, which does not need to handle dynamic node
changes, making it more efficient in stable scenarios.

Finally, we compare the number of global model updates
completed per unit of time. Experimental results show that
Baseline PBFT has a throughput of 6.6 operations per time
unit, significantly higher than Dynamic PBFT’s 2.7. This is
also due to the dynamic management overhead and baseline’s
lightweight design. It is indeed one disadvantage of the pro-
posed method which requires further optimization.

In general, although Dynamic PBFT has slightly higher
consensus time due to added complexity, its advantages in
dynamic network environments are still significant, including
improved fault tolerance, optimized communication efficiency,
and enhanced scalability.

V. CONCLUSION

This paper proposed dynamic-PBFT to enhance federated
averaging in decentralized federated learning for dynamic
vehicular networks. Our approach improves robustness and
efficiency compared to the baseline PBFT, maintaining model
convergence despite adversarial conditions. Simulation results
demonstrate its scalability and resilience under varying node
dynamics. There are many parts that can be investigate fur-
ther in future work, including extending scale of simulation,
optimizing communication overhead, incorporating real-world
mobility data, and exploring advanced consensus mechanisms
to further improve reliability and efficiency.
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